MEES - MARINE-ESTUARINE-ENVIRONMENTAL SCIENCES

MEES432 Physiological Ecology of Animals (3 Credits)
An examination of the influence of environmental constrains on animal function and energetic efficiency in the context of abiotic conditions in the habitats occupied by individuals.
Prerequisite: BSCI361; or students who have taken courses with comparable content may contact the department; or permission of instructor.
Credit Only Granted for: MEES498E, MEES698E, MEES432, or MEES632. Formerly: MEES498E.

MEES498 Topics in Marine-Estuarine-Environmental Sciences (1-4 Credits)
Lecture and/or laboratory series organized to study a selected area of marine-estuarine-environmental sciences not otherwise considered in formal courses.

MEES604 Biometry (3 Credits)
Application of inferential statics to environmental data, design a sound experiments and studies, and a working knowledge of R.
Credit Only Granted for: BIOM601, MEES604, MEES698B. Formerly: MEES698B.

MEES605 Energy and Environment (3 Credits)
Role of energy in environmental and human-dominated systems and their linkage. Discussion of the historical and modern production and consumption of energy. Energy systems simulation modeling, energy analysis and energy auditing. Review of national energy policies and proposed alternatives.
Prerequisite: MATH120; or must have completed MATH220; or students who have taken courses with comparable content may contact the department. Cross-listed with ENST605.
Credit Only Granted for: ENST405, ENST605, MEES605, or MEES698Z. Formerly: MEES698Z.

MEES606 Cell and Molecular Biology for Environmental Scientists (4 Credits)
An invisible world courses through every living thing. This is the world of molecules, tiny machines millions of time smaller than the machines we are most familiar with, like automobiles. Individually, each of the molecules is a delicate instrument, measuring, making, weighing, and building the thing we call life. The molecules of living things are unique among the molecules of the Earth. These tiny molecular messengers, engines, and machines are built to perform highly specific tasks unlike the molecules formed by physical processes.
Prerequisite: An undergraduate course in cell biology or biochemistry.
Credit Only Granted for: MEES698C or MEES606. Formerly: MEES698C.

MEES607 Quantitative Methods in Environmental Sciences (3 Credits)
Mathematical approaches and solutions (both analytical and numerical) that cut across environmental disciplines, and will introduce analytical techniques.
Prerequisite: MATH120 and MATH121; or must have completed MATH220 and MATH221; or students who have taken courses with comparable content may contact the department.
Credit Only Granted for: MEES607 or MEES698G. Formerly: MEES698G.

MEES608 Seminar in Marine-Estuarine-Environmental Sciences (1-2 Credits)

MEES610 Land Margin Interactions (4 Credits)
Broad overview of the components and biogeochemistry of the coastal zone (atmosphere, land, streams, wetlands, estuaries) and the time and space scales on which interactions occur between components. Includes 4 h of classes per week with readings from the literature, field trips, a term paper, and a forum. Course is taught on the Interactive Video Network.
Credit Only Granted for: MEES610 or MEES698I. Formerly: MEES698I.

MEES611 Estuarine Systems Ecology (3 Credits)
A broad systems perspective on the important components and processes of estuarine ecosystems, with quantitative and/or mathematical treatment toward development of representative models for estuarine dynamics.

MEES614 Spatial Ecology in R (4 Credits)
Many ecological questions in terrestrial and marine systems originate from the observation that organisms and the ecological processes that influence them vary in space. This course emphasizes the study of spatial ecological patterns (including animal movement), the processes that generate and maintain these patterns and processes, and the construction of models in R to analyze, simulate, and understand the interplay between spatial pattern, ecological processes, and scale. The objective of the course is to introduce students to ecological theories and concepts relevant to the study of spatial ecological patterns in terrestrial and marine systems, while providing the R skills necessary to articulate and answer scientific questions by confronting models with data.
Restriction: Permission of instructor.

MEES617 Hydrological Effects of Land Use Change (3 Credits)
Detailed examination of the catchment-scale hydrological effects attributable to major land use and land cover alterations, including both anthropic and non-anthropic disturbances.
Prerequisite: Statistics course and hydrology course or permission of instructor.

MEES620 Environment and Society (3 Credits)
Students will obtain foundational knowledge of core theories and methods that integrate cultural and socio-economic research into environmental science. Key topics include: coupled natural and human systems, cultural models of the environment, social networks, ecological economics, political ecology, environmental justice, and science communication.Cross-listed with: ANTH620.
Credit Only Granted for: ANTH620 or MEES620. Additional Information: Offered over the interactive video network.

MEES621 Biological Oceanography (4 Credits)
Population and community ecology of estuarine and marine systems; coastal and estuarine processes are emphasized in the context of oceans in general. Field and lab trips required.

MEES626 Environmental Geochemistry I (3 Credits)
Brief overview of biogeochemical cycles; fundamental aquatic chemistry that can be applied to a variety of environmental systems.
Recommended: Completion of one semester of physical chemistry is recommended.
Restriction: Completion of one semester of physical chemistry is recommended.
Credit Only Granted for: MEES626 or MEES698L. Formerly: MEES698L.
MEES627 Environmental Geochemistry II (3 Credits)
Detailed examination of aquatic geochemical cycles, including inorganic and organic geochemistry. Topics include global biogeochemical cycles, estuarine cycling, redox cycles, radiochemistry, stable isotope biogeochemistry and sediment biogeochemistry/diagenesis.
Prerequisite: MEES626, or permission of instructor.
Credit Only Granted for: MEES627 or MEES698K.
Formerly: MEES698K.

MEES631 Fish Ecology (3 Credits)
Study of the interrelationships between individuals, their communities and environment. Explores the environmental biology of fish, feeding ecology, energetics and growth, population biology, reproduction and life history, and population and community interactions.
Restriction: Permission of instructor.

MEES632 Physiological Ecology of Animals (3 Credits)
An examination of the influence of environmental constraints on animal function and energetic efficiency in the context of abiotic conditions in the habitats occupied by individuals.
Credit Only Granted for: MEES698E, MEES498E, MEES432, MEES632.
Formerly: MEES698E.

MEES637 Zooplankton Ecology (3 Credits)
A quantitative investigation of zooplankton ecology, emphasizing population dynamics and modeling, feeding, behavior, food-web, and biophysical interactions.
Prerequisite: MEES621, or permission of instructor.
Credit Only Granted for: MEES698G, MEES637.
Formerly: MEES698G.

MEES640 Interconnected Earth Systems: Land, Ocean, and Estuary (3 Credits)
Explores the interconnected physical and biogeochemical systems of land, estuary, and ocean with cross cutting themes of human impacts and global change. Broad concepts will be combined with targeted interactive case studies to demonstrate how these systems are linked by humans, climate, and water.

MEES650 Advanced Wetland Ecology (3 Credits)
Plant and animal communities, biogeochemistry, and ecosystem properties of wetland systems. In-class laboratory will emphasize collection and analysis of field data on wetland vegetation, soil, and hydrology.
Prerequisite: BIOM301, or permission of AGNR-Environmental Science & Technology department; or permission of CMNS-Marine & Estuarine-Environmental Science Prog. Jointly offered with ENST450, ENST650.
Credit Only Granted for: ENST450, ENST650, or MEES650.

MEES660 Ecological Systems (3 Credits)
An introduction to the field of ecology is provided for matriculating graduate students and prepares them for more advanced concepts. Students will be exposed to ecology both in theory and practice through lectures, readings, and quantitative exercises, round table debates and discussions with current practitioners.

MEES661 Physics of Estuarine and Marine Environments (3 Credits)
General introduction to the physical oceanography of estuarine and marine systems. Physical characteristics of seawater, heat and mass transport, major ocean currents, basic dynamical oceanography, surface waves, tides, turbulence, sediment transport, estuarine circulation.
Prerequisite: Must have completed one year of physics coursework; and must have completed one year of calculus coursework. Or permission of instructor.

MEES670 Conservation Biology (3 Credits)
Conservation in the Anthropocene means conserving biodiversity and ecosystem function in the midst of climate change, habitat loss, overexploitation, altered nutrient cycling, and invasive species with protected areas and reserve networks, ecosystem restoration, and other biodiversity conservation and management schemes. Cross-listed with CONS670.
Credit Only Granted for: CONS670 or MEES670.

MEES671 Remote Sensing for Environmental Management (4 Credits)
Coverage of tools necessary to carry out remote sensing studies of ecosystem pattern and process, land-use and land-cover change and the impact of climate changes. General overview of recent research at the interface of remote sensing, ecosystem analysis, global change, and environmental management.
Credit Only Granted for: MEES671, MEES698X.
Formerly: MEES698X.

MEES680 Cell and Molecular Biology for the Environmental Scientist-From Genes to Ecosystems (3 Credits)
Introduces environmental scientists to the methods and approaches that are the foundations for today's breakthroughs in molecular and cellular biology. Detailed examination of papers published in the last few years along with online background materials will be used to reinforce the connection of key concepts to experimentation.

MEES681 Advanced Ecological Design (3 Credits)
An advanced survey course on the field of ecological design. Principles of design are illustrated with case studies from biologically-based waste treatment systems, ecosystem management and sustainable development.
Prerequisite: Must have completed one semester of calculus; and (CHEM131 and PHYS121). Or permission of instructor. Cross-listed with ENST681.
Credit Only Granted for: ENST481, ENST681, or MEES681.

MEES682 Fishery Science and Management (3 Credits)
Restriction: Permission of instructor.

MEES698 Special Topics in Marine-Estuarine-Environmental Sciences (1-4 Credits)
Credit according to time schedule and course organization. Lecture and/or laboratory series organized to study selected areas of environmental science not otherwise considered by existing courses. May be repeated for credit since topic coverage will change.

MEES699 Special Problems in Marine-Estuarine-Environmental Sciences (1-3 Credits)
Research on specialized topics under the direction of individual faculty members.

MEES708 Advanced Topics in Marine-Estuarine-Environmental Science (1-4 Credits)
Lectures, experimental courses and other specialized graduate training in various relevant disciplines.
Repeatable to: 12 credits if content differs.
MEES712 Advanced Population Dynamics and Assessment (4 Credits)
Quantitative and modeling skills, including understanding of population
dynamics and responses of populations to exploitation and management
actions. Coverage of population models of production, mortality, stock
and recruitment, age and growth, and harvesting, and methods for using
these models to provide management advice.
Prerequisite: MEES607 or BIOM601; or permission of instructor.
Credit Only Granted for: MEES698D or MEES712.
Formerly: MEES698D.

MEES743 Aquatic Toxicology (3 Credits)
Comprehensive course in which a definitive description of basic concepts
and principles, laboratory testing and field situations, as well as examples
of typical data and their interpretation and use by industry and water
resource managers, will be discussed. The toxicological action and fate
of environmental pollutants will be examined in aquatic ecosystems,
whole organisms and at the cellular, biochemical and molecular levels.

MEES799 Masters Thesis Research (1-6 Credits)
MEES898 Pre-Candidacy Research (1-8 Credits)
MEES899 Doctoral Dissertation Research (1-8 Credits)