MEES - MARINE-ESTUARINE-ENVIRONMENTAL SCIENCES

MEES432 Physiological Ecology of Animals (3 Credits)
An examination of the influence of environmental constrains on animal function and energetic efficiency in the context of abiotic conditions in the habitats occupied by individuals.
Prerequisite: BSCI361; or students who have taken courses with comparable content may contact the department; or permission of instructor.
Credit Only Granted for: MEES498E, MEES698E, MEES432, or MEES632.
Formerly: MEES498E.

MEES498 Topics in Marine-Estuarine-Environmental Sciences (1-4 Credits)
Lecture and/or laboratory series organized to study a selected area of marine-estuarine-environmental sciences not otherwise considered in formal courses.

MEES604 Biometry (3 Credits)
Application of inferential statics to environmental data, design a sound experiments and studies, and a working knowledge of R.
Credit Only Granted for: BIOM601, MEES604, MEES698B.
Formerly: MEES698B.

MEES605 Energy and Environment (3 Credits)
Role of energy in environmental and human-dominated systems and their linkage. Discussion of the historical and modern production and consumption of energy. Energy systems simulation modeling, energy analysis and energy auditing. Review of national energy policies and proposed alternatives.
Prerequisite: MATH120; or must have completed MATH220; or students who have taken courses with comparable content may contact the department. Also offered as: ENST605.
Credit Only Granted for: ENST405, ENST605, MEES605, or MEES698Z.
Formerly: MEES698Z.

MEES606 Cell and Molecular Biology for Environmental Scientists (4 Credits)
An invisible world courses through every living thing. This is the world of molecules, tiny machines millions of time smaller than the machines we are most familiar with, like automobiles. Individually, each of the molecules is a delicate instrument, measuring, making, weighing, and building the thing we call life. The molecules of living things are unique among the molecules of the Earth. These tiny molecular messengers, engines, and machines are built to perform highly specific tasks unlike the molecules formed by physical processes.
Prerequisite: An undergraduate course in cell biology or biochemistry.
Credit Only Granted for: MEES698C or MEES606.
Formerly: MEES698C.

MEES607 Quantitative Methods in Environmental Sciences (3 Credits)
Mathematical approaches and solutions (both analytical and numerical) that cut across environmental disciplines, and will introduce analytical techniques.
Prerequisite: MATH120 and MATH121; or must have completed MATH220 and MATH221; or students who have taken courses with comparable content may contact the department.
Credit Only Granted for: MEES607 or MEES698G.
Formerly: MEES698G.

MEES608 Seminar in Marine-Estuarine-Environmental Sciences (1-2 Credits)

MEES610 Land Margin Interactions (4 Credits)
Broad overview of the components and biogeochemistry of the coastal zone (atmosphere, land, streams, wetlands, estuaries) and the time and space scales on which interactions occur between components. Includes 4 h of classes per week with readings from the literature, field trips, a term paper, and a forum. Course is taught on the Interactive Video Network.
Credit Only Granted for: MEES610 or MEES698I.
Formerly: MEES698I.

MEES611 Estuarine Systems Ecology (3 Credits)
A broad systems perspective on the important components and processes of estuarine ecosystems, with quantitative and/or mathematical treatment toward development of representative models for estuarine dynamics.
Restriction: Permission of instructor.

MEES614 Landscape Ecology (4 Credits)
Landscape ecology emphasizes spatial patterning—its causes, development, and importance for ecological processes. Students will become familiar with concepts, methods, and applications of landscape ecology through reading classic and contemporary literature representative of state-of-the-art research; class lectures; completion of two projects designed to provide "hands on" experience with some of the quantitative methods and tools; and completion of one independent project.
Restriction: Permission of instructor.

MEES616 Fisheries Oceanography (3 Credits)
Combines the disciplines of physical oceanography, biological oceanography and fisheries science to understand how environmental variability, ecosystems and humans influence harvested fish and shellfish populations. Physical-biological interactions from small-scale processes that influence individual larvae to basin-scale oscillations in climate that shift ecosystems.
Prerequisite: MEES661, AOSC670, MEES621, MEES631, MEES634, or MEES682; or permission of instructor.
Credit Only Granted for: MEES698F or MEES616.
Formerly: MEE698F.

MEES617 Hydrological Effects of Land Use Change (3 Credits)
Detailed examination of the catchment-scale hydrological effects attributable to major land use and land cover alterations, including both anthropic and non-anthropic disturbances.
Prerequisite: Statistics course and hydrology course or permission of instructor.

MEES621 Biological Oceanography (4 Credits)
Population and community ecology of estuarine and marine systems; coastal and estuarine processes are emphasized in the context of oceans in general. Field and lab trips required.

MEES626 Environmental Geochemistry I (3 Credits)
Brief overview of biogeochemical cycles; fundamental aquatic chemistry that can be applied to a variety of environmental systems.
Recommended: Completion of one semester of physical chemistry is recommended.
Restriction: Permission of instructor.
Credit Only Granted for: MEES626 or MEES698L.
Formerly: MEES698L.

MEES626 Environmental Geochemistry II (3 Credits)
Overview of major Earth processes affecting the biogeochemical cycles of carbon, nitrogen, and phosphorus. Interactions with atmospheric, geological, and biological components of the Earth. Proportion of inorganic to organic forms of these elements is influenced by these processes. Examination of the role of these elements in aquatic and marine environments.
Prerequisite: Statistics course and hydrology course or permission of instructor.
Credit Only Granted for: MEES626 or MEES698L.
Formerly: MEES698L.

MEES632 Physical Chemistry (3 Credits)
This course is designed to be an introduction to physical chemistry. Topics include: atomic and molecular structure, the solid state, chemical bonds in molecular species, the chemical bond, intermolecular forces, and thermodynamics.
Prerequisite: MATH120; or must have completed MATH220; or students
who have taken courses with comparable content may contact the department.
Credit Only Granted for: MEES632.
Formerly: MEES698C.

MEES682; or permission of instructor.

MEES698E or MEES616.

MEES698F or MEES610.

MEES698G or MEES614.

MEES698I or MEES611.

MEES698L or MEES616.

MEES698M or MEES614.

MEES698N or MEES611.

MEES698O or MEES616.

MEES698P or MEES614.

MEES698Q or MEES611.

MEES698R or MEES616.

MEES698S or MEES614.

MEES698T or MEES611.

MEES698U or MEES616.
MEES627 Environmental Geochemistry II (3 Credits)
Detailed examination of aquatic geochemical cycles, including inorganic and organic geochemistry. Topics include global biogeochemical cycles, estuarine cycling, redox cycles, radiochemistry, stable isotope biogeochemistry and sediment biogeochemistry/diagenesis.
Prerequisite: MEES626, or permission of instructor.
Credit Only Granted for: MEES627 or MEES698K.
Formerly: MEES698K.

MEES631 Fish Ecology (3 Credits)
Study of the interrelationships between individuals, their communities and environment. Explores the environmental biology of fish, feeding ecology, energetics and growth, population biology, reproduction and life history, and population and community interactions.
Restriction: Permission of instructor.

MEES632 Physiological Ecology of Animals (3 Credits)
An examination of the influence of environmental constraints on animal function and energetic efficiency in the context of abiotic conditions in the habitats occupied by individuals.
Credit Only Granted for: MEES698E, MEES498E, MEES432, MEES632.
Formerly: MEES698E.

MEES637 Zooplankton Ecology (3 Credits)
A quantitative investigation of zooplankton ecology, emphasizing population dynamics and modeling, feeding, behavior, food-webs, and biophysical interactions.
Prerequisite: MEES621, or permission of instructor.
Credit Only Granted for: MEES698E, MEES632.
Formerly: MEES696E.

MEES650 Wetland Ecology (3 Credits)
Plant and animal communities, biogeochemistry, and ecosystem properties of wetland systems. Laboratory emphasizes collection and analysis of field data on wetland vegetation, soil, and hydrology.
Prerequisite: BIOM301; or permission of instructor. Also offered as: ENST450, ENST650.
Credit Only Granted for: ENST450, ENST650, NRMT450, or MEES650.

MEES652 Advanced Wetland Creation and Restoration (3 Credits)
Design, construction, and evaluation of wetlands restored or created for ecosystem enhancement or mitigation. Topics will include ecological restoration theory, goal-setting practices for establishing wetland hydrology, substrate, and vegetation, and restored ecosystem monitoring and functional assessment.
Prerequisite: BSCI362, ENST450, or MEES650; and (BSCI160 and BSCI161; or BSCI106). Or permission of CMNS-Marine & Estuarine-Environmental Science Prog. Also offered as: ENST652.
Credit Only Granted for: ENST452, ENST652, or MEES652.

MEES661 Physics of Estuarine and Marine Environments (3 Credits)
General introduction to the physical oceanography of estuarine and marine systems. Physical characteristics of seawater, heat and mass transport, major ocean currents, basic dynamical oceanography, surface waves, tides, turbulence, sediment transport, estuarine circulation.
Prerequisite: Must have completed one year of physics coursework; and must have completed one year of calculus coursework. Or permission of instructor.

MEES670 Conservation Biology (3 Credits)
Conservation in the Anthropocene means conserving biodiversity and ecosystem function in the midst of climate change, habitat loss, overexploitation, altered nutrient cycling, and invasive species with protected areas and reserve networks, ecosystem restoration, and other biodiversity conservation and management schemes. Also offered as: CONS670.
Credit Only Granted for: CONS670 or MEES670.

MEES671 Remote Sensing for Environmental Management (4 Credits)
Coverage of tools necessary to carry out remote sensing studies of ecosystem pattern and process, land-use and land-cover change and the impact of climate changes. General overview of recent research at the interface of remote sensing, ecosystem analysis, global change, and environmental management.
Credit Only Granted for: MEES671, MEES698X.
Formerly: MEES698X.

MEES681 Advanced Ecological Design (4 Credits)
An advanced survey course on the field of ecological design. Principles of design are illustrated with case studies from biologically-based waste treatment systems, ecosystem management and sustainable development.
Prerequisite: (CHEM131; or students who have taken courses with comparable content may contact the department); and (MATH120; or must have completed MATH220); and PHYS121. Or permission of instructor. Also offered as: ENST481, ENST681.
Credit Only Granted for: ENST481, ENST681, or MEES681.

MEES682 Fishery Science and Management (3 Credits)
Restriction: Permission of instructor.

MEES698 Special Topics in Marine-Estuarine-Environmental Sciences (1-4 Credits)
Credit according to time schedule and course organization. Lecture and/or laboratory series organized to study selected areas of environmental science not otherwise considered by existing courses. May be repeated for credit since topic coverage will change.

MEES699 Special Problems in Marine-Estuarine-Environmental Sciences (1-3 Credits)
Research on specialized topics under the direction of individual faculty members.

MEES708 Advanced Topics in Marine-Estuarine-Environmental Science (1-4 Credits)
Lectures, experimental courses and other specialized graduate training in various relevant disciplines.
Repeatable to: 12 credits if content differs.

MEES712 Advanced Population Dynamics and Assessment (4 Credits)
Quantitative and modeling skills, including understanding of population dynamics and responses of populations to exploitation and management actions. Coverage of population models of production, mortality, stock and recruitment, age and growth, and harvesting, and methods for using these models to provide management advice.
Prerequisite: MEES607 or BIOM601; or permission of instructor.
Credit Only Granted for: MEES698D or MEES712.
Formerly: MEES698D.
MEES743 Aquatic Toxicology (3 Credits)
Comprehensive course in which a definitive description of basic concepts and principles, laboratory testing and field situations, as well as examples of typical data and their interpretation and use by industry and water resource managers, will be discussed. The toxicological action and fate of environmental pollutants will be examined in aquatic ecosystems, whole organisms and at the cellular, biochemical and molecular levels.

MEES799 Masters Thesis Research (1-6 Credits)
MEES898 Pre-Candidacy Research (1-8 Credits)
MEES899 Doctoral Dissertation Research (1-8 Credits)