ASTRONOMY (ASTR)

Graduate Degree Program
College: Computer, Mathematical, and Natural Sciences

ABSTRACT

The Department of Astronomy offers a program of study leading to a Doctor of Philosophy degree. Students typically earn a Master of Science after completing the program’s second year, either with coursework and a second-year project or with coursework and a Master’s thesis.

A full schedule of courses covering most fields of astronomy is offered. Some areas in which the faculty focus their research efforts are comets, interplanetary dust, planetary dynamics, exoplanets, star and planet formation, mm wavelength astronomy, the interstellar medium, black holes, active galaxies, time-domain astronomy, galaxy formation and evolution, plasma astrophysics, high energy astrophysics, theoretical and computational astrophysics, and cosmology.

FINANCIAL ASSISTANCE

The Department of Astronomy provides full funding for up to six years while students maintain adequate progress toward degree. Funding is provided in the form of teaching and/or research assistantships unless the student has been awarded a fellowship that provides full funding. Research assistantships are either with faculty in the Department or with scientists at the NASA/Goddard Space Flight Center or other local astronomical research centers. In addition to a competitive annual stipend, graduate students on a teaching and/or research assistantship receive full tuition waivers (up to 10 credits per semester) and are eligible for health insurance.

The Department of Astronomy provides full funding for up to six years for students who have been admitted to the Ph.D. program only. (Admitted students typically receive an M.S. degree after their second year in the program.) For full details, see http://www.astro.umd.edu/graduate/admissions.html

Because of the large number of qualified applicants, the Department of Astronomy has had to restrict formal admission to the Graduate School to those who have shown particularly outstanding work in their undergraduate records. Students who enter the graduate program are normally expected to have strong backgrounds in astronomy, physics, and mathematics (equivalent to a B.S. in Astronomy or Physics). A student with deficiencies in one of these areas may be admitted but will be expected to remedy such deficiencies as soon as possible.

In our admission process, we are looking for students who will thrive and succeed in our program, and who will be productive and active members of our graduate student community. To evaluate this we take into account all of the information you include in the application. Good academic preparation is needed for success in any graduate program; this can be demonstrated in a number of ways, such as good grades especially in appropriate-level physics and math classes, or with the Physics GRE test (which is an optional component of the application package and will not count against you if not submitted).

DESCRIPTION OF RESEARCH WORK EXPERIENCE

In your application materials, we are very interested in understanding not only what you have done, but also what you have learned as part of your classes and research experience.

Note that the Department of Astronomy accepts applications for the Ph.D. program only. (Admitted students typically receive an M.S. degree after their second year in the program.) For full details, see http://www.astro.umd.edu/graduate/admissions.html

For more admissions information or to apply to the program, please visit our Graduate School website (https://gradschool.umd.edu/admissions/application-process/step-step-guide-applying/).

APPLICATION DEADLINES

<table>
<thead>
<tr>
<th>Type of Applicant</th>
<th>Fall Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Applicants</td>
<td></td>
</tr>
<tr>
<td>US Citizens and Permanent</td>
<td>December 13, 2024</td>
</tr>
<tr>
<td>Residents</td>
<td></td>
</tr>
<tr>
<td>International Applicants</td>
<td>December 13, 2024</td>
</tr>
<tr>
<td>F (student) or J (exchange</td>
<td></td>
</tr>
<tr>
<td>visitor) visas; A,E,G,H,I</td>
<td></td>
</tr>
<tr>
<td>and L visas and</td>
<td></td>
</tr>
<tr>
<td>immigrants</td>
<td></td>
</tr>
</tbody>
</table>
RESOURCES AND LINKS:
Other Deadlines: astro.umd.edu (http://www.astro.umd.edu)
Program Website: astro.umd.edu/graduate/admissions (http://www.astro.umd.edu/graduate/admissions.html)

REQUIREMENTS
• Astronomy, Doctor of Philosophy (Ph.D.) (https://academiccatalog.umd.edu/graduate/programs/astronomy-astr/astronomy-phd/)
• Astronomy, Master of Science (M.S.) (https://academiccatalog.umd.edu/graduate/programs/astronomy-astr/astronomy-ms/)

FACILITIES AND SPECIAL RESOURCES
The Department has guaranteed observing time on the 4.3-meter Lowell Discovery Telescope (LDT) through a partnership with Lowell Observatory. We have strong interactions with other major observatories, where many students and faculty maintain observing programs, and with neighboring scientific institutes, including the Naval Observatory, the Naval Research Lab, Carnegie Earth and Planets Lab (EPL), the Johns Hopkins Applied Physics Lab (APL), and other government agencies. We have joined with Caltech and other partners in the Zwicky Transient Facility, a time-domain survey for studying rare and exotic transient phenomena which will see first light at Palomar Observatory in 2017. Our planetary science team continues to be heavily involved with space missions visiting solar system bodies, such as NASA’s New Horizons and Lucy missions, after leadership roles in various successful past missions, including Deep Impact and DART.

The Center for Research and Exploration in Space Science & Technology II (CRESST II) is the most visible of our many interactions with NASA’s Goddard Space Flight Center, located only 5 miles away. UMD researchers work together with Goddard scientists on many topics, ranging from the study of neutron stars, black holes, and extremely hot gas throughout the universe to the study of planets in our Solar System and exoplanets beyond our Solar System. This partnership offers an exciting array of opportunities for graduate students to work with Goddard scientists and facilities on their Ph.D. theses.

U. Maryland and NASA’s Goddard Space Flight Center formed the Joint Space Science Institute (JSI), a close collaboration between the Departments of Astronomy and Physics and NASA/Goddard. JSI’s areas of investigation include black hole physics, high-energy astrophysics, and cosmology.

The Center for Theory and Computation (CTC), a large group of theoretical astrophysicists within the department, makes use of a modern, in-house cluster of compute nodes and the powerful campus supercomputer Zaratan to perform computational analyses and simulations across a range of research areas. These facilities are available to faculty as well as students pursuing computationally intensive thesis projects.

In 2014, much of the Department moved to the new Physical Sciences Complex (PSC). Highlights of the building include beautiful architecture, windowed office space for grad students, a grad student lounge, and a state-of-the-art visualization lab for state-of-the-art simulations and displays of large datasets.

This Department is associated with the following research units and facilities:
• Center for Research and Exploration in Space Science and Technology II (CRESST II) (http://cresst.umd.edu/): Partnership between UMCP, UMBC, USRA, and NASA/Goddard, with an emphasis on high-energy astrophysics.
• Laboratory for Millimeter Wave Astronomy (LMA) (http://www.astro.umd.edu/rareas/lma/)
• Center for Theory and Computation (CTC) (http://www.astro.umd.edu/rareas/ctc/): Astronomy Dept. center for theory- and computation-related research programs.
• Discovery Channel Telescope (DCT) (http://www.astro.umd.edu/facilities/dct.html)
• Zwicky Transient Facility (ZTF) (https://www.ptf.caltech.edu/ztf/)
• PDS Small Bodies Node (https://pds-smallbodies.astro.umd.edu/)
• PDS Small Bodies Node (https://www.ptf.caltech.edu/ztf/)