ENVIRONMENTAL SCIENCE AND TECHNOLOGY MAJOR

The Environmental Science and Technology major prepares students for graduate study and careers focusing on understanding the natural and built environments and resolving environmental problems and concerns for the benefit of humans and ecosystems. Specifically, the program encompasses impacts of human society on the natural environment, the effects of environmental conditions on humans and ecosystems, science-based management of ecosystems, watershed and soil-related processes related to environmental quality, and designing solutions to sustainably improve environmental quality of air, water, soil, and biological communities. The ENST major is a science- and math-based curriculum leading to a B.S. degree in Environmental Science and Technology with concentrations in Ecological Technology Design, Ecosystem Health, Soil and Watershed Science, or Natural Resources Management. These concentrations share a foundation in science and mathematics, offer specialization through required concentration core courses, and provide flexibility in course selection in concentration depth and technical elective categories. The concentrations are designed to provide students with a fundamental understanding of environmental systems and issues and the multidisciplinary quantitative design and analytical tools necessary to solve complex environmental problems.

For future updates and exciting changes, please visit our website at enst.umd.edu (http://enst.umd.edu/).

Concentrations:

Ecological Technological Design

The ENST concentration in Ecological Technology Design prepares students for integrating natural systems with the built environment to solve environmental problems while achieving economic, ecological and social sustainability. The science and applications of using natural systems, processes and organisms to address environmental issues has evolved during the last few decades to a mature level whereby there are strong employment opportunities for graduates that are cross-educated in ecology and technology. Examples of eco-technological applications include restoration of urban and rural streams, creation of wastewater treatment wetlands, design of raingardens and bioretention systems for low-impact stormwater management, design of eco-industrial parks, life cycle assessment of products for improved environmental performance, bioremediation and phytoremediation of contaminated groundwater, ecological systems for by-product recovery, and filtration of contaminated air with bioreactors. The curriculum consists of a broad set of background courses in environmental science, electives in applications of Ecological Technology Design, and upper-level courses that synthesize the major. Hands-on design experience is included in required internship and practicum courses.

Ecosystem Health

The ecosystem health concentration is a broad and increasingly important field with wide ranging applications in the environmental science and public health fields. The field encompasses environmental factors and ecosystem functions that affect human health and the effects of human activities on the ecosystem products and services we depend on. Example topics within the field include ecological risk analysis, environmental toxicology, environmental impact assessment, chemical fate and transport, human health risk assessment, industrial hygiene, air quality, environmental microbiology, food safety and security, biodiversity and human health, and children’s environmental health. The Ecosystem Health concentration within the Department of Environmental Science and Technology offers a science-based curriculum that includes advanced studies in ecosystem health and environmental protection and the impacts of environmental degradation on human health.

Natural Resources Management

The goal of the Natural Resources Management Concentration is to teach students concepts of the environmentally sound use and management of natural resources. Ecosystems and human societies are linked in complex cycles and relationships between vegetation and wildlife, forests and cities, conservation and development. By learning to participate effectively within these cycles, we will help sustain a harmonious relationship between the environment and human activities. This concentration provides students with the knowledge and skills they need to work in such positions as wildlife biologists, environmental consultants, wetland scientists, forest managers, fisheries biologists, aquatic biologists, and nature interpreters.

Soil and Watershed Science

The Soil and Watershed Science concentration enables students to understand the complex ways in which aquatic and terrestrial ecosystems are influenced by soil properties and processes and land management decisions. The soil performs such critical ecological functions as supplying and purifying water, recycling wastes, nurturing plants, modifying the atmosphere by emitting or sequestering gases and particulates, providing habitat for the most diverse biological communities on Earth, and serving as a medium for human engineering projects.

The concentration in Soil and Watershed Science in ENST provides students with one of the top soil science programs in the nation. The curriculum prepares graduates for work in variety of careers addressing natural resource and environmental issues and provides a rigorous science background for those planning to pursue post-graduate degrees in environmental sciences, soil science, watershed processes, and related fields. Students graduating from this program will make valuable contributions to society as they pursue challenging careers critical to the protection of the environment. In addition to pursuing advanced degrees, graduates may work in both the private and public sectors performing such services as soil mapping, wetland delineation, land conservation planning, forestry, waste management, farm advising, international development, and consulting in environmental, construction, and landscape architecture areas. Graduates from the Soil and Watershed Science concentration will be qualified to take the national exam to become a Certified Professional Soil Scientist (CPSS).

Program Learning Outcomes

1. Science and Technology Application. Students will demonstrate the ability to apply natural science principles and technology methods (particularly in ENST), and be able to express scientific questions and findings in the context of relevant socio-environmental dimensions
2. Quantitative Reasoning. Students will demonstrate the ability to apply basic mathematical and quantitative reasoning in the context of relevant socio-environmental dimensions
3. Written and Oral Communication. Students will be able to communicate clearly, concisely, and effectively in writing and speech to scientific, management, policy, or general audiences
4. Information Literacy. Students will demonstrate information literacy skills that they can successfully apply in and outside their disciplines
5. Technology Fluency. Students will be able to apply technologies to their research and academic efforts in the context of their specific disciplines.

Requirements
This program requires a total of 120 credit for a Bachelor of Science, including the general education program course credits, required major credits; Technology and Ecosystem elective credits, and free elective credits. All courses counted toward the major must be completed with a C- or better. An overall GPA of 2.0 in major courses is required for graduation.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST Core for all Areas of Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSCI170 & BSCI171</td>
<td>Principles of Molecular & Cellular Biology and Principles of Molecular & Cellular Biology Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>MATH120</td>
<td>Elementary Calculus I</td>
<td>3</td>
</tr>
<tr>
<td>BSCI160 & BSCI161</td>
<td>Principles of Ecology and Evolution and Principles of Ecology and Evolution Lab</td>
<td>4</td>
</tr>
<tr>
<td>CHEM131 & CHEM132</td>
<td>Chemistry I - Fundamentals of General Chemistry and General Chemistry I Laboratory</td>
<td>4</td>
</tr>
<tr>
<td>ENST200</td>
<td>Fundamentals of Soil Science</td>
<td>4</td>
</tr>
<tr>
<td>ENST233</td>
<td>Introduction to Environmental Health</td>
<td>4</td>
</tr>
<tr>
<td>CHEM231 & CHEM232</td>
<td>Organic Chemistry I and Organic Chemistry Laboratory I</td>
<td>4</td>
</tr>
<tr>
<td>PHYS121</td>
<td>Fundamentals of Physics I</td>
<td>4</td>
</tr>
<tr>
<td>GEOG306 or BIOM301</td>
<td>Introduction to Quantitative Methods for the Geographical Environmental Sciences or Introduction to Biometrics</td>
<td>3</td>
</tr>
<tr>
<td>ENST360</td>
<td>Ecosystem Ecology</td>
<td>4</td>
</tr>
<tr>
<td>ENST389</td>
<td>Internship</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration (See list below) 34-35

Senior Integrative Experience - Choose one course from list below 3
- ENST388 Honors Thesis Research
- ENST470 (Ideas into Impact)
- ENST486 (Senior Professional Internship)
- ENST489 Research Experience

Total Credits 78-79

Concentrations:

Ecological Technology Design

Course | Title | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST481</td>
<td>Ecological Design</td>
<td>4</td>
</tr>
<tr>
<td>MATH121</td>
<td>Elementary Calculus II</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration Depth - Ecology (2 Courses) 6
- ENST410 Ecosystem Services: An Integrated Analysis
- ENST422 Soil Microbial Ecology
- ENST450 Wetland Ecology
- ENST453 Watershed Science: Water Balance, Open Channel Flow, and Near Surface Hydrology
- GEOL453 Ecosystem Restoration

Concentration Depth - Design (4 Courses) 11
- ENST281 Computer Aided Design in Ecology
- ENST282 Ecological Innovation and Entrepreneurship
- ENST405 Energy and Environment
- ENST415 Renewable Energy
- ENST443 Industrial Ecology
- ENST485 Water Management in Urban Environment
- ENST456 (Spatial Analysis and Ecological Sampling) or GEOG372 Remote Sensing or GEOG373 Geographic Information Systems or INAG237 Surveying and GPS Applications in Agriculture

Ecosystem Health

Course | Title | Credits |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST461</td>
<td>Urban Wildlife Management</td>
<td></td>
</tr>
<tr>
<td>GEOG331</td>
<td>Introduction to Human Dimensions of Global Change</td>
<td></td>
</tr>
<tr>
<td>LARC452</td>
<td>Green Infrastructure and Community Greening</td>
<td></td>
</tr>
<tr>
<td>PLSC480</td>
<td>Urban Ecology</td>
<td></td>
</tr>
</tbody>
</table>

Sustainable Technology:
- ENST432 Environmental Microbiology
- ENST441 Sustainable Agriculture
- GEOL453 Ecosystem Restoration
- INAG250 Fundamentals of Agricultural Mechanics
- PLSC425 Green Roofs and Urban Sustainability

Wetlands:
- ENST430 Wetland Soils
- ENST450 Wetland Ecology
- ENST452 Wetland Restoration
- GEOL452 Watershed and Wetland Hydrology

Ecology and Ecosystem Management:
- BSCI467 Freshwater Biology
- ENST373 Natural History of the Chesapeake Bay
- ENST460 Principles of Wildlife Management
- PLSC471 Forest Ecology

Total Credits 36

Ecosystem Health Technical Electives 112

Urban Ecosystems and Human Dimensions:
- ENST461 Urban Wildlife Management
- GEOG331 Introduction to Human Dimensions of Global Change

LARC452 Green Infrastructure and Community Greening
PLSC480 Urban Ecology
Sustainable Technology:
- ENST422 Sustainable Agriculture
- GEOL453 Ecosystem Restoration
- INAG250 Fundamentals of Agricultural Mechanics
- PLSC425 Green Roofs and Urban Sustainability

Wetlands:
- ENST430 Wetland Soils
- ENST450 Wetland Ecology
- ENST452 Wetland Restoration
- GEOL452 Watershed and Wetland Hydrology

Ecology and Ecosystem Management:
- BSCI467 Freshwater Biology
- ENST373 Natural History of the Chesapeake Bay
- ENST460 Principles of Wildlife Management
- PLSC471 Forest Ecology

Total Credits 36
Environmental Health:
ENST403 Invasive Species Ecology
ENST423 Soil-Water Pollution
ENST434 Toxic Contaminants: Sources, Fate, and Effects
ENST436 Emerging Environmental Threats
ENST445 Ecological Risk Assessment
Ecological Processes:
ENST405 Energy and Environment
GEOG372 Remote Sensing
GEOG415 Land Use, Climate Change, and Sustainability
GEOL452 Watershed and Wetland Hydrology
LARC450 Environmental Resources
Ecological Processes:
BSCI467 Freshwater Biology
ENST422 Soil Microbial Ecology
ENST450 Wetland Ecology
ENST460 Principles of Wildlife Management
PLSC400 Plant Physiology
Human Health:
BSCI424 Pathogenic Microbiology
BSCI425 Advanced Cell Biology Lab Practices
BSCI437 General Virology
BSCI440 Mammalian Physiology
Cultural or Social Dimensions:
ENST410 Ecosystem Services: An Integrated Analysis
GEOG331 Introduction to Human Dimensions of Global Change
GEOG431 Culture and Natural Resource Management
PLCY301 Sustainability
SOCY406 Globalization

Total Credits 35

Natural Resources Management

Course Title Credits

Concentration Core
BSCI222 Principles of Genetics 4
ENST214 Introduction to Fish and Wildlife Sciences 3
ENST487 Environmental Conflicts and Decision Making 2

Concentration Depth (4 Courses) 12
ENST456 (Spatial Analysis and Ecological Sampling)
or GEOG372 Remote Sensing
or GEOG373 Geographic Information Systems
or INAG237 Surveying and GPS Applications in Agriculture
ENST450 Wetland Ecology
or ENST453 Watershed Science: Water Balance, Open Channel Flow, and Near Surface Hydrology
AREC240 Introduction to Economics and the Environment
or AREC241 Environment, Economics and Policy
or ENST410 Ecosystem Services: An Integrated Analysis
ENST424 Field Study in Soil Morphology
or ENST430 Wetland Soils
or ENST441 Sustainable Agriculture
or ENST462 Field Techniques in Wildlife Management
or GEOG418 Field and Laboratory Techniques in Environmental Science

Natural Resources Management Technical Electives 10
Wildlife:
ENST460 Principles of Wildlife Management 2
ENST461 Urban Wildlife Management 2
BSCI334 Mammalogy
& BSCI335 and Mammalogy Laboratory 2
ENSP102 Introduction to Environmental Policy 2
PLSC254 Woody Plants for Mid-Atlantic Landscape II
ENSP330 Introduction to Environmental Law 2
or GVPT273 Introduction to Environmental Politics

Fisheries:
ENST314 Fisheries Management and Sustainability 3
COMM250 Introduction to Communication Inquiry 3
COMM382 Essentials of Intercultural Communication 3
GEOG331 Introduction to Human Dimensions of Global Change 3
GEOG416 Conceptualizing and Modeling Human-Environmental Interactions 3
ENSP102 Introduction to Environmental Policy 3
ENSP330 Introduction to Environmental Law 3
GVPT273 Introduction to Environmental Politics 3

Wetlands:
ENST430 Wetland Soils 4
ENST450 Wetland Ecology 4
ENST452 Wetland Restoration 4
GEOL452 Watershed and Wetland Hydrology 4
PLSC489 Special Topics in Plant Science (PLSC489D Plant Taxonomy) 4
or PLSC254 Woody Plants for Mid-Atlantic Landscape II

Forestry:
PLSC253 Woody Plants for Mid-Atlantic Landscapes I
PLSC254 Woody Plants for Mid-Atlantic Landscape II
PLSC400 Plant Physiology
PLSC471 Forest Ecology

Total Credits 33

Soil and Watershed Science

Course Title Credits

Concentration Core
GEO100 Physical Geology 4
GEO110 Physical Geology Laboratory
ENST456 (Spatial Analysis and Ecological Sampling) 0-3
or GEOG372 Remote Sensing
or GEOG373 Geographic Information Systems
or INAG237 Surveying and GPS Applications in Agriculture

Concentration Depth - Soil Sciences 7
ENST411 Principles of Soil Fertility
ENST414 Soil Morphology, Genesis and Classification 5
ENST417 Soil Physics and Hydrology 7
ENST421 Soil Chemistry 5

Total Credits 35
Environmental Science and Technology Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST422</td>
<td>Soil Microbial Ecology</td>
</tr>
<tr>
<td>ENST424</td>
<td>Field Study in Soil Morphology</td>
</tr>
<tr>
<td>ENST430</td>
<td>Wetland Soils</td>
</tr>
<tr>
<td>ENST441</td>
<td>Sustainable Agriculture</td>
</tr>
<tr>
<td>ENST450</td>
<td>Wetland Ecology</td>
</tr>
</tbody>
</table>

Concentration Depth - Field Experiences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST301</td>
<td>Field Soil Morphology I</td>
</tr>
<tr>
<td>ENST302</td>
<td>Field Soil Morphology II</td>
</tr>
<tr>
<td>ENST303</td>
<td>Field Soil Morphology III</td>
</tr>
<tr>
<td>ENST309</td>
<td>Advanced Field Soil Morphology</td>
</tr>
<tr>
<td>ENST424</td>
<td>Field Study in Soil Morphology</td>
</tr>
<tr>
<td>ENST430</td>
<td>Wetland Soils</td>
</tr>
<tr>
<td>ENST441</td>
<td>Sustainable Agriculture</td>
</tr>
<tr>
<td>ENST450</td>
<td>Wetland Ecology</td>
</tr>
</tbody>
</table>

Concentration Depth - Systems

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREC365</td>
<td>World Hunger, Population, and Food Supplies</td>
</tr>
<tr>
<td>ENST410</td>
<td>Ecosystem Services: An Integrated Analysis</td>
</tr>
<tr>
<td>ENST432</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>PLSC400</td>
<td>Plant Physiology</td>
</tr>
</tbody>
</table>

Soil and Watershed Science Technical Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREC365</td>
<td>World Hunger, Population, and Food Supplies</td>
</tr>
<tr>
<td>GEOG372</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>PLSC303</td>
<td>Global Food Systems</td>
</tr>
<tr>
<td>PLSC405</td>
<td>Agroecology</td>
</tr>
<tr>
<td>BSCI223</td>
<td>General Microbiology</td>
</tr>
<tr>
<td>BSCI337</td>
<td>Biology of Insects</td>
</tr>
<tr>
<td>BSCI467</td>
<td>Freshwater Biology</td>
</tr>
<tr>
<td>ENST410</td>
<td>Ecosystem Services: An Integrated Analysis</td>
</tr>
<tr>
<td>GEOL322</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>GEOL340</td>
<td>Geomorphology</td>
</tr>
<tr>
<td>GEOL341</td>
<td>Structural Geology</td>
</tr>
<tr>
<td>GEOL342</td>
<td>Sedimentation and Stratigraphy</td>
</tr>
<tr>
<td>GEOL444</td>
<td>Low Temperature Geochemistry</td>
</tr>
</tbody>
</table>

Watersheds:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENST334</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>ENST423</td>
<td>Soil-Water Pollution</td>
</tr>
<tr>
<td>ENST453</td>
<td>Watershed Science: Water Balance, Open Channel Flow, and Near Surface Hydrology</td>
</tr>
<tr>
<td>GEOL451</td>
<td>Groundwater</td>
</tr>
<tr>
<td>GEOL452</td>
<td>Watershed and Wetland Hydrology</td>
</tr>
<tr>
<td>GEOL453</td>
<td>Ecosystem Restoration</td>
</tr>
</tbody>
</table>

Total Credits 32-35

1. Any combination of electives can be taken. Courses appear in blocks of related topics to assist students in tailoring their program to particular interests within the concentration. Under some circumstances, other 300 or 400 level electives can be substituted with advisor’s approval.

2. Required for Professional Certification as an Associate Wildlife Biologist by The Wildlife Society.

3. Required for Professional Certification as an Associate Fisheries Professional by American Fisheries Society.

4. Required for Professional Certification as a Wetland Professional in Training (WPIT) by The Society of Wetland Scientists Professional Certification Program (SWSPCP).

5. Required for Soil Certification Exam.

Four Year Plan

Click here for roadmaps for four-year plans in the College of Agricultural and Natural Resources.

Additional information on developing a four-year academic plan can be found on the following pages:

- 4yearplans.umd.edu
- The Student Academic Success-Degree Completion Policy (https://academiccatalog.umd.edu/undergraduate/registration-academic-requirements-regulations/academic-advising/) section of this catalog