ATMOSPHERIC AND OCEANIC SCIENCE MAJOR

Fundamental concepts from mathematics, chemistry, physics, and computer science are applied to understand the basic principles that control our weather and climate, from extreme events like tornades to the millennial changes of ice ages and the results of human modification of our environment. Coursework in the first two years emphasizes mastery of these fundamentals. Coursework in the last two years provides a comprehensive survey of atmospheric and oceanic science, while specialty courses and guided research allow the student to develop expertise in an area of concentration. The Department has particular strengths in computer modeling and remote sensing of the atmosphere and ocean, atmospheric chemistry, and climate studies. In addition to the Department, nearby research laboratories such as the NOAA National Centers for Environmental Prediction and NASA Goddard Space Flight Center offer the student many research opportunities. Courses offered by this department may be found under the following acronyms: AOSC

ADMISSION TO THE MAJOR

The major in Atmospheric and Oceanic Science is not a limited enrollment program (LEP), so there are no formal requirements for entry into the major. Successful students generally have a solid background, earning good grades in mathematics, physics and chemistry.

Program Objectives

The Atmospheric and Oceanic Science B.S. program seeks to educate majors in the basic principles that control our weather and the interactions between atmosphere and ocean that regulate Earth’s climate. Students will be provided with practical experience as researchers and creators of knowledge, and equipped with the requirements for a full range of careers in Atmospheric and Oceanic Science, as well as for related areas in secondary education, graduate school, industry, and public service.

Program Learning Outcomes

1. Students will demonstrate competence in the design and execution of research in Atmospheric and Oceanic Science.
2. Students will demonstrate a competence in the standard media of professional communications in the Atmospheric and Oceanic Sciences, including written manuscripts, oral presentations, and poster presentations.
3. Students will demonstrate the ability to gain in-depth knowledge of a specific area of Atmospheric and Oceanic science in the context of active research.
4. Students will demonstrate competent knowledge of a broad cross-section of Atmospheric and Oceanic science subject material.

Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOSC200</td>
<td>Weather and Climate</td>
<td>3</td>
</tr>
<tr>
<td>AOSC201</td>
<td>Weather and Climate Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>AOSC431</td>
<td>Atmospheric Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>AOSC432</td>
<td>Dynamics of the Atmosphere and Ocean</td>
<td>3</td>
</tr>
<tr>
<td>AOSC494</td>
<td>Atmospheric and Oceanic Science Seminar</td>
<td>1</td>
</tr>
</tbody>
</table>

AOSC493 Senior Research Project I 3
AOSC498 Senior Research Project II 3
AOSC358 Special Topics in Atmospheric and Oceanic Science (AOSC358L-Computing and Data Analysis: Deciphering Climate Change Clues) 3
AOSC4XX Upper Level Major Electives 2 6
Select four of the following: 12
AOSC400 Physical Meteorology of the Atmosphere
AOSC401 Climate Dynamics and Earth System Science
AOSC424 Remote Sensing of the Atmosphere and Ocean
AOSC433 Atmospheric Chemistry and Climate
AOSC470 Synoptic Meteorology
CHEM135 General Chemistry for Engineers 3
CHEM136 General Chemistry Laboratory for Engineers 1
MATH140 Calculus I 4
MATH141 Calculus II 4
MATH241 Calculus III 3 4
MATH246 Differential Equations for Scientists and Engineers 3 3
PHYS161 General Physics: Mechanics and Particle Dynamics 4 3
PHYS174 Physics Laboratory Introduction 4 1
PHYS260 General Physics: Vibration, Waves, Heat, Electricity and Magnetism 4 4
PHYS261 General Physics: Vibrations, Waves, Heat, Electricity and Magnetism (Laboratory) 4 1
PHYS270 General Physics: Electrodynamics, Light, Relativity and Modern Physics 4 3
PHYS271 General Physics: Electrodynamics, Light, Relativity and Modern Physics (Laboratory) 4 4
Total Credits 69

1 Or another AOSC course at the 200-level
2 For a detailed list, see our website for AOSC majors
3 The sequence for math majors may also be used: MATH340, MATH341
4 The sequence for physics majors may also be used: PHYS171, PHYS174, PHYS272, PHYS275, PHYS273

The program requires that a grade of “C” or better be obtained in all courses required for the major. Beginning with students matriculating in Fall 2012, to be awarded a baccalaureate degree, students must have a minimum C (2.0) cumulative grade point average across all courses used to satisfy major degree requirements.

Detailed information on the major can be obtained by consulting our major website and making an appointment with an AOSC advisor.

Four Year Plan

Click here (https://cmns.umd.edu/undergraduate/advising-academic-planning/academic-planning/four-year-plans/four-year-plans-gened/) for roadmaps for four-year plans in the College of Computer, Mathematical, and Natural Sciences.

Additional information on developing a four-year academic plan can be found on the following pages:
Atmospheric and Oceanic Science Major

- 4yearplans.umd.edu (http://4yearplans.umd.edu/)
- the Student Academic Success-Degree Completion Policy (https://academiccatalog.umd.edu/undergraduate/registration-academic-requirements-regulations/academic-advising/) section of this catalog