## MATHEMATICS MAJOR

Program Director: Larry Washington, Ph.D.
The program in Mathematics leads to a degree of Bachelor of Science in Mathematics and offers students training in preparation for graduate work, teaching, and positions in government or industry. Mathematical training is integrated with computer use in several courses. Because a strong mathematical background is important in many fields, over half of UMCP Mathematics majors are double majors. Additional information on these topics and mathematics is available from the departmental website.

## Placement in Courses

The Department of Mathematics has a large offering to accommodate a great variety of background, interests, and abilities. The department permits students to take any course for which they have the appropriate background, regardless of formal course work. For example, students with a high school calculus course may be permitted to begin in the middle of the calculus sequence even if they do not have advanced standing. Students may obtain undergraduate credit for mathematics courses in any of the following ways: passing the appropriate CEEB Advanced Placement Examination, passing standardized CLEP examinations, and through the department's credit-by-examinations. Students are urged to consult with advisors from the Department of Mathematics to assist with proper placements.

## Program Objectives

The Department of Mathematics educates its majors in a broad range of modern mathematics while instilling in them a strong ability to solve problems, apply mathematics to other areas, and create rigorous mathematical arguments. The program prepares the majors to further their mathematical education in graduate school, or to teach at the secondary school level, or to work in government or business.

## Program Learning Outcomes

1. Students will acquire problem-solving skills in a broad range of significant mathematics.
2. Students will gain an understanding of what constitutes mathematical thinking, including the ability to produce and judge the validity of rigorous mathematical arguments.
3. Students will be able to communicate mathematical ideas and arguments.
4. Students will be prepared to use mathematics in their future endeavors, not only in the discipline of mathematics, but also in other disciplines.

## Statistics and Probability and Applied Mathematics

Courses in statistics and probability, and applied mathematics are offered by the Department of Mathematics. These courses are open to non-majors as well as majors, and carry credit in mathematics. Students wishing to concentrate in the above may do so by choosing an appropriate program under the Department of Mathematics.

## REQUIREMENTS

There are four tracks for the major: the traditional track, the applied mathematics track, the secondary education track, and the statistics
track. The secondary education track is for students seeking to become certified to teach mathematics at the secondary level. Each mathematics major must complete each required course with a grade of C - or better and with an overall major GPA of 2.0.

## Traditional Track

| Course | Title | Credits |
| :--- | :--- | ---: |
| Introductory Sequence |  |  |
| MATH140 | Calculus I | 4 |
| MATH141 | Calculus II | 4 |
| MATH240 | Introduction to Linear Algebra | 4 |
| MATH241 | Calculus III | 4 |
| MATH310 | Introduction to Mathematical Proof | 3 |
| Select one of the following: | 3 |  |


| MATH246 | Differential Equations for Scientists and Engineers |  |
| :---: | :--- | :--- |
| MATH436 | Differential Geometry of Curves and Surfaces I |  |
| MATH462 | Partial Differential Equations |  |
| MATH/AMSC/STAT Courses |  |  |
| Select eight courses of 400-level or higher; must include: ${ }^{2}$ | 3 |  |
| MATH410 Advanced Calculus I <br> Select one of the following: 3 |  |  |


| MATH401 | Applications of Linear Algebra |
| :--- | :--- |
| MATH403 | Introduction to Abstract Algebra |
| MATH405 | Linear Algebra |

Select one of the following: 3
AMSC460 Computational Methods
AMSC466 Introduction to Numerical Analysis I
Any 400-level STAT course other than STAT464
Select depth requirement; a one year sequence chosen from the 3-6
following:
MATH410 Advanced Calculus I
\& MATH411 and Advanced Calculus II
MATH403 Introduction to Abstract Algebra
\& MATH404 and Field Theory
MATH403 Introduction to Abstract Algebra
\& MATH405 and Linear Algebra
STAT410 Introduction to Probability Theory
\& STAT420 and Theory and Methods of Statistics
Select electives: 400-level MATH/AMSC/STAT course ${ }^{3,4}$ 6-9
Computer Programming Requirement
Select one of the following: 3-4
CMSC106 Introduction to C Programming
CMSC131 Object-Oriented Programming I
CMSC132 Object-Oriented Programming II
ENAE202 Computing Fundamentals for Engineers
ENEE150 Intermediate Programming Concepts for Engineers
PHYS165 Introduction to Programming in the Physical Sciences
Supporting three-course sequence ${ }^{5}$
Select one of eight sequences
Sequence One ( 11 credits)
PHYS161 General Physics: Mechanics and Particle Dynamics

| PHYS260 | General Physics: Vibration, Waves, Heat, Electricity <br> \& PHYS261 Magnetism <br> and General Physics: Mechanics, Vibrations, <br> Waves, Heat (Laboratory) |
| :--- | :--- |
| PHYS270 | General Physics: Electrodynamics, Light, Relativity <br> \& PHYS271 Modern Physics <br> and General Physics: Electrodynamics, Light, |
|  | Relativity and Modern Physics (Laboratory) |

Sequence Two (9 credits)

| PHYS171 | Introductory Physics: Mechanics |
| :--- | :--- |
| PHYS272 | Introductory Physics: Fields |
| PHYS273 | Introductory Physics: Waves |

Sequence Three (9 credits)

| ENES102 | Mechanics I |
| :---: | :--- |
| PHYS161 | General Physics: Mechanics and Particle <br> Dynamics |
| ENES220 | Mechanics II |
| Sequence Four (12 credits) |  |

CMSC131 Object-Oriented Programming I
CMSC132 Object-Oriented Programming II
CMSC216 Introduction to Computer Systems
Sequence Five ( 13 credits)
CHEM146 Principles of General Chemistry
\& CHEM177 and Introduction to Laboratory Practices and Research in the Chemical Sciences
CHEM237 Principles of Organic Chemistry I
CHEM247 Principles of Organic Chemistry II
Sequence Six ( 12 credits)
CHEM131 Chemistry I- Fundamentals of General Chemistry
\& CHEM132 and General Chemistry I Laboratory
CHEM231 Organic Chemistry I
\& CHEM232 and Organic Chemistry Laboratory I
CHEM241 Organic Chemistry II
\& CHEM242 and Organic Chemistry Laboratory II
Sequence Seven ( 11 credits)
ECON200 Principles of Microeconomics
ECON201 Principles of Macroeconomics
ECON305 Intermediate Macroeconomic Theory and Policy or ECON306 Intermediate Microeconomic Theory \& Policy
OR
ECON325 Intermediate Macroeconomic Analysis or ECON326 Intermediate Microeconomic Analysis
Sequence Eight ( 9 credits)

| BMGT220 | Principles of Accounting I |
| :--- | :--- |
| BMGT221 | Principles of Accounting II |
| BMGT340 | Business Finance |

## Total Credits

substitute two courses (with strong mathematics content) from outside the Mathematics Department for one upper-level elective course.
${ }^{4}$ May not include: MATH461, MATH478, MATH480-MATH484, STAT464
${ }^{5}$ Intended to broaden the student's mathematical experience. (Other sequences might be approved by the Undergraduate Office but they would have to make use of mathematical ideas, comparable to the sequences on this list.)

## Applied Mathematics Track

| Course | Title | Credits |
| :--- | :--- | ---: |
| Introductory | Sequence ${ }^{\text {1 }}$ |  |
| MATH140 | Calculus I | 4 |
| MATH141 | Calculus II | 4 |
| MATH240 | Introduction to Linear Algebra | 4 |
| MATH241 | Calculus III | 4 |
| MATH310 | Introduction to Mathematical Proof | 3 |
| Select one of the following: | 3 |  |


| MATH246 | Differential Equations for Scientists and Engineers |  |
| :---: | :---: | :---: |
| MATH436 | Differential Geometry of Curves and Surfaces I |  |
| MATH462 | Partial Differential Equations |  |
| MATH/AMSC/STAT Courses |  |  |
| Select eight 400-level or higher; must include: ${ }^{2}$ |  |  |
| MATH410 | Advanced Calculus I | 3 |
| STAT410 | Introduction to Probability Theory | 3 |
| STAT4XX | One additional STAT course other than STAT400, STAT410, STAT464 | 3 |
| MATH401 or MATH405 | Applications of Linear Algebra Linear Algebra | 3 |
| AMSC460 or AMSC466 | Computational Methods Introduction to Numerical Analysis I | 3 |

Select one of the following: 3

| MATH416 | Applied Harmonic Analysis: An Introduction to <br> Signal Processing |
| :--- | :--- |
| MATH420 | Mathematical Modeling |
| MATH424 | Introduction to the Mathematics of Finance |
| MATH431 | Geometry for Computer Applications |


| MATH410 | Advanced Calculus I |
| :--- | :--- |
| \& MATH411 | and Advanced Calculus II |
| MATH416 | Applied Harmonic Analysis: An Introduction to |
| \& MATH464 | Signal Processing <br> and Transform Methods |
| MATH462 | Partial Differential Equations |
| \& MATH463 | and Complex Variables |
| STAT410 | Introduction to Probability Theory |
| \& STAT420 | and Theory and Methods of Statistics |

1 Or honors sequence: MATH340-MATH341.Completion of
MATH340 satisfies the requirement for MATH241; completion
of MATH340-MATH341 satisfies the requirement for
MATH240-MATH241-MATH246.
2 At least four courses must be taken at College Park.
${ }^{3} 400$ level courses. Students with a strong interest in applied
mathematics may, with the approval of the Undergraduate Office,

Select electives: 400-level MATH/AMSC/STAT course ${ }^{3}$

## Computer Programming Requirement

Select one of the following:

| CMSC106 | Introduction to C Programming |
| :--- | :--- |
| CMSC131 | Object-Oriented Programming I |
| CMSC132 | Object-Oriented Programming II |
| ENAE202 | Computing Fundamentals for Engineers |
| ENEE150 | Intermediate Programming Concepts for Engineers |
| PHYS165 | Introduction to Programming in the Physical |


| Supporting Three-course Sequence ${ }^{4}$ |  |
| :--- | :--- |
| Select one of twelve sequences | $9-13$ |
| Sequence One (11 credits) |  |


| PHYS161 | General Physics: Mechanics and Particle |
| :---: | :--- |
|  | Dynamics |

PHYS260 General Physics: Vibration, Waves, Heat, Electricity
\& PHYS261 and Magnetism
and General Physics: Mechanics, Vibrations, Waves, Heat (Laboratory)
PHYS270 General Physics: Electrodynamics, Light, Relativity
\& PHYS271 and Modern Physics
and General Physics: Electrodynamics, Light,
Relativity and Modern Physics (Laboratory)

| Sequence Two (9 credits) |  |
| :---: | :--- |
| PHYS171 | Introductory Physics: Mechanics |
| PHYS272 | Introductory Physics: Fields |
| PHYS273 | Introductory Physics: Waves |

Sequence Three (9 credits)

| ENES102 | Mechanics I |
| :---: | :--- |
| PHYS161 | General Physics: Mechanics and Particle <br> Dynamics |
| ENES220 | Mechanics II |
| Sequence Four (12 credits) |  |
| CMSC131 | Object-Oriented Programming I |
| CMSC132 | Object-Oriented Programming II |
| CMSC216 | Introduction to Computer Systems |
| Sequence Five (13 credits) |  |

Sequence Five (13 credits)
CHEM146 Principles of General Chemistry
\& CHEM177 and Introduction to Laboratory Practices and Research in the Chemical Sciences
CHEM237 Principles of Organic Chemistry I
CHEM247 Principles of Organic Chemistry II
Sequence Six ( 12 credits)
CHEM131 Chemistry I - Fundamentals of General Chemistry
\& CHEM132 and General Chemistry I Laboratory
CHEM231 Organic Chemistry I
\& CHEM232 and Organic Chemistry Laboratory I
CHEM241 Organic Chemistry II
\& CHEM242 and Organic Chemistry Laboratory II
Sequence Seven (11 credits)
ECON200 Principles of Microeconomics
ECON201 Principles of Macroeconomics
ECON305 Intermediate Macroeconomic Theory and Policy or ECON306 Intermediate Microeconomic Theory \& Policy

OR
ECON325 Intermediate Macroeconomic Analysis or ECON326 Intermediate Microeconomic Analysis
Sequence Eight (9 credits)
BMGT220 Principles of Accounting I
BMGT221 Principles of Accounting II
BMGT340 Business Finance
Sequence Nine (12-13 credits)
BSCI170 Principles of Molecular \& Cellular Biology
\& BSCI171 and Principles of Molecular \& Cellular Biology Laboratory
BSCI160 Principles of Ecology and Evolution
\& BSCI161 and Principles of Ecology and Evolution Lab
CHEM131 Chemistry I - Fundamentals of General Chemistry
\& CHEM132 and General Chemistry I Laboratory
OR
CHEM146 Principles of General Chemistry
\& CHEM177 and Introduction to Laboratory Practices and Research in the Chemical Sciences
Sequence Ten (10 credits)
ASTR120 Introductory Astrophysics - Solar System
ASTR121 Introductory Astrophysics II - Stars and Beyond ${ }^{5}$
PHYS161 General Physics: Mechanics and Particle Dynamics
or PHYS171 Introductory Physics: Mechanics
Sequence Eleven (12 credits)
GEOL100 Physical Geology
Select Two From:
GEOL322 Mineralogy
GEOL340 Geomorphology
GEOL341 Structural Geology
GEOL375 Introduction to the Blue Ocean
Sequence Twelve ( 10 credits)
AOSC200 Weather and Climate
\& AOSC201 and Weather and Climate Laboratory
Two additional 400-level AOSC courses
Total Credits
52-56
1 Or honors sequence: MATH340-MATH341.Completion of MATH340 satisfies the requirement for MATH241; completion of MATH340-MATH341 satisfies the requirement for MATH240-MATH241-MATH246.
2 At least four courses must be taken at College Park.
${ }^{3} 400$ level courses. May not include: MATH461, MATH478, MATH480-MATH484, STAT464
4 Intended to broaden the student's mathematical experience. (Other sequences might be approved by the Undergraduate Office but they would have to make use of mathematical ideas, comparable to the sequences on this list.
5 ASTR121 is restricted to Astronomy majors, but may be open to Mathematics majors if space is available. Consequently, Mathematics majors are not guaranteed a seat in this course. Contact the Astronomy department for more information.

# Secondary Education Track 



| CHEM131 | Chemistry I - Fundamentals of General Chemistry <br> \& CHEM132 |
| :--- | :--- |
| and General Chemistry I Laboratory |  |
| CHEM231 | Organic Chemistry I <br> \& CHEM232 <br> and Organic Chemistry Laboratory I |
| Sequence Two (7 credits) |  |

Sequence Three (8 credits)
BSCI170 Principles of Molecular \& Cellular Biology \& BSCI171 and Principles of Molecular \& Cellular Biology Laboratory
BSCI160 Principles of Ecology and Evolution
\& BSCI161 and Principles of Ecology and Evolution Lab
Sequence Four (7 credits)
ASTR120 Introductory Astrophysics - Solar System
ASTR121 Introductory Astrophysics II - Stars and Beyond
Sequence Five ( $7-8$ credits)
GEOL100 Physical Geology
\& GEOL110 and Physical Geology Laboratory
GEOL322 Mineralogy
or GEOL340 Geomorphology
or GEOL341 Structural Geology
or GEOL375 Introduction to the Blue Ocean
Sequence Six (7 credits)

| AOSC200 | Weather and Climate |
| :--- | :--- |
| \& AOSC201 | and Weather and Climate Laboratory |

AOSC4xx Any 400 level AOSC course
Total Credits 62-65
${ }^{1}$ Or honors sequence: MATH340-MATH341.Completion of MATH340 satisfies the requirement for MATH241; completion of MATH340-MATH341 satisfies the requirement for MATH240-MATH241-MATH246.
${ }^{2}$ At least four courses must be taken at College Park.
${ }^{3}$ May not include: MATH461,MATH478, MATH480-MATH484, or STAT464
${ }^{4}$ The student-teaching courses have further prerequisites in the College of Education. In order to take these courses the student must be admitted into the College of Education. A student in the secondary education track of the mathematics major would normally be expected to receive a double major in Mathematics and Mathematics Education.
${ }^{5}$ These are intended to broaden the student's mathematical experience. (Other sequences might be approved by the Undergraduate Office but they would have to make use of mathematical ideas, comparable to the sequences on this list.

## Statistics Track

| Course | Title | Credits |
| :--- | :--- | ---: |
| Introductory | Sequence ${ }^{\text {1 }}$ |  |
| MATH140 | Calculus I | 4 |
| MATH141 | Calculus II | 4 |
| MATH240 | Introduction to Linear Algebra | 4 |



| Sequence Four (12 credits) |  |
| :---: | :---: |
| CMSC131 | Object-Oriented Programming I |
| CMSC132 | Object-Oriented Programming II |
| CMSC216 | Introduction to Computer Systems |
| Sequence Five (13 credits) |  |
| CHEM146 <br> \& CHEM177 | Principles of General Chemistry and Introduction to Laboratory Practices and Research in the Chemical Sciences |
| CHEM237 | Principles of Organic Chemistry I |
| CHEM247 | Principles of Organic Chemistry II |
| Sequence Six (12 credits) |  |
| CHEM131 <br> \& CHEM132 | Chemistry I Fundamentals of General Chemistry and General Chemistry I Laboratory |
| CHEM231 <br> \& CHEM232 | Organic Chemistry I and Organic Chemistry Laboratory I |
| CHEM241 <br> \& CHEM242 | Organic Chemistry II and Organic Chemistry Laboratory II |
| Sequence Seven (11 credits) |  |
| ECON200 | Principles of Microeconomics |
| ECON201 | Principles of Macroeconomics |
| ECON305 or ECON30 | Intermediate Macroeconomic Theory and Policy Intermediate Microeconomic Theory \& Policy |
| OR |  |
| ECON325 or ECON32 | Intermediate Macroeconomic Analysis Intermediate Microeconomic Analysis |
| Sequence Eight (9 credits) |  |
| BMGT220 | Principles of Accounting I |
| BMGT221 | Principles of Accounting II |
| BMGT340 | Business Finance |
| Total Credits | 58-63 |
| ${ }^{1}$ Or honors sequence: MATH340-MATH341.Completion of MATH340 satisfies the requirement for MATH241; completion of MATH340-MATH341 satisfies the requirement for MATH240-MATH241-MATH246. |  |
| ${ }^{2}$ At least four courses must be taken at College Park. 3 except STAT464 |  |
| 4 Intended to broaden the student's mathematical experience. (Other sequences might be approved by the Undergraduate Office but they would have to make use of mathematical ideas comparable to the sequences on this list.) |  |

## Other Requirements for the Major Areas of Study

Within the Department of Mathematics there are a number of identifiable areas which students can pursue to suit their own goals and interests. They are briefly described below. Note that they do overlap and that students need not confine themselves to one of them.

## 1. Pure Mathematics

Courses that belong to this area include:

| Course | Title | Credits |
| :--- | :--- | ---: |
| MATH402 | Algebraic Structures | 3 |
| MATH403 | Introduction to Abstract Algebra | 3 |


| MATH404 | Field Theory | 3 |
| :--- | :--- | :--- |
| MATH405 | Linear Algebra | 3 |
| MATH406 | Introduction to Number Theory | 3 |
| MATH410 | Advanced Calculus I | 3 |
| MATH411 | Advanced Calculus II | 3 |
| MATH430 | Euclidean and Non-Euclidean Geometries | 3 |
| MATH432 | Introduction to Topology | 3 |
| MATH436 | Differential Geometry of Curves and Surfaces I | 3 |
| MATH437 | Differential Forms | 3 |
| MATH445 | Elementary Mathematical Logic | 3 |
| MATH452 | Introduction to Dynamics and Chaos | 3 |
| MATH456 | Cryptography | 3 |
| STAT410 | Introduction to Probability Theory | 3 |
| STAT420 | Theory and Methods of Statistics | 3 |


| Students preparing for graduate school in mathematics should <br> include: |  |  |
| :--- | :--- | :--- |
| MATH403 | Introduction to Abstract Algebra | 3 |
| MATH405 | Linear Algebra | 3 |
| MATH410 | Advanced Calculus I | 3 |
| MATH411 | Advanced Calculus II | 3 |
| MATH463 | Complex Variables | 3 |
| or MATH660 Complex Analysis I |  |  |
| MATH432 | Introduction to Topology (is also desirable) | 3 |
| or MATH730 | Fundamental Concepts of Topology |  |

Other courses from the above list and graduate courses are also appropriate.

## 2. Secondary Teaching

In addition to the courses required by the Secondary Education Track, the following courses are particularly suited for students preparing to teach:

| Course | Title | Credits |
| :--- | :--- | ---: |
| MATH401 | Applications of Linear Algebra | 3 |
| MATH406 | Introduction to Number Theory | 3 |
| MATH445 | Elementary Mathematical Logic | 3 |
| MATH470 | Mathematics for Secondary Education | 3 |
| MATH475 | Combinatorics and Graph Theory | 3 |

Students who are interested in secondary teaching should contact also the College of Education for certification requirements and other information: www.education.umd.edu/studentinfo (https:// academiccatalog.umd.eduHTTP.//www.education.umd.edu/ studentinfo/).

## 3. Statistics

For a student with a Bachelor's degree seeking work requiring some statistical background, the minimal program is STAT400-STAT401. To work primarily as a statistician, one should combine STAT400-STAT401 with STAT430 and at least one more statistics course, most suitably, STAT440. A deeper sequence is STAT410, STAT420, STAT430. This offers a better understanding and wider knowledge of statistics and is a general purpose program (i.e., does not specify one area of application). For economics applications,

MATH424, STAT400, STAT401, STAT430, STAT440 should be considered. To prepare for graduate work, STAT410 and STAT420 give the best background, with STAT430, STAT440 added at some later stage.

## 4. Computational Mathematics

There are a number of math courses which emphasize the computational aspects of mathematics including the use of the computer. They are:

| Course | Title | Credits |
| :--- | :--- | ---: |
| AMSC460 | Computational Methods | 3 |
| AMSC466 | Introduction to Numerical Analysis I | 3 |
| MATH431 | Geometry for Computer Applications | 3 |
| MATH456 | Cryptography | 3 |
| MATH475 | Combinatorics and Graph Theory | 3 |
| STAT430 | Introduction to Statistical Computing with SAS | 3 |

Students interested in this area should take the CMSC supporting sequence as soon as possible.

## 5. Applied Mathematics

The courses that lead most rapidly to applications are the courses listed above in 3 and 4 and

| Course | Title | Credits |
| :--- | :--- | ---: |
| MATH401 | Applications of Linear Algebra | 3 |
| MATH416 | Applied Harmonic Analysis: An Introduction to | 3 |
|  | Signal Processing | 3 |
| MATH420 | Mathematical Modeling | 3 |
| MATH452 | Introduction to Dynamics and Chaos | 3 |
| MATH462 | Partial Differential Equations | 3 |
| MATH464 | Transform Methods |  |

A student interested in applied mathematics should obtain, in addition to a solid training in mathematics, a good knowledge of at least one area in which mathematics is currently being applied. Concentration in this area is good preparation for employment in government and industry or for graduate study in applied mathematics.

## FOUR-YEAR PLAN

Click here (https://cmns.umd.edu/undergraduate/advising-academic-planning/academic-planning/four-year-plans/four-year-plans-gened/) for roadmaps for four-year plans in the College of Computer, Mathematical, and Natural Sciences.

Additional information on developing a four-year academic plan can be found on the following pages:

- http://4yearplans.umd.edu
- the Student Academic Success-Degree Completion Policy (https:// academiccatalog.umd.edu/undergraduate/registration-academic-requirements-regulations/academic-advising/\#success) section of this catalog

