MECHANICAL ENGINEERING MAJOR

Mechanical engineering is the broadest of the engineering disciplines. It is concerned with the design, manufacture, and operation of a wide range of components, devices, or systems. The field comfortably encompasses applications ranging from micro-mechanical surgical systems to internal combustion engines for Formula One racecars or giant turbines for renewable energy wind farms. A fitting adage for the discipline would be turning ideas into reality.

Graduates of the program will possess the skills and the knowledge base critical for success in today’s marketplace, with the problem solving expertise and flexibility necessary to adapt as technology and society evolve. Students must be proficient in the traditional fundamentals of mechanical engineering such as solid and fluid mechanics, thermodynamics, transfer processes, materials engineering, electronic instrumentation and measurements, controls, and design. However, they will also explore new/emerging areas through a variety of electives such as smart structures, machine learning, additive manufacturing, Lean Six Sigma, and medical robotics.

Attributes such as teamwork, ethics, and leadership are emphasized in the curriculum. The program is designed to integrate out-of-classroom experiences, helping students explore career options and apply what they are learning in the real world. Students can work with faculty on research projects, serve as teaching fellows, pursue leadership opportunities through clubs, and participate in national competitions such as the Formula SAE/Baja SAE teams or the DOE Solar Decathlon. The flexibility of the curriculum, and frequent offering of required courses, allows many of our students to participate in study abroad or cooperative education opportunities.

The Bachelor of Science degree in Mechanical Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org (http://www.abet.org).

Courses offered by this department may be found under the following acronym: ENME

Program Objectives

1. Graduates will provide value in their chosen career path, whether for mastery of the disciplines central to mechanical engineering or for the broader analytical skills, critical thinking, innovation and/or creative abilities provided by their engineering education.
2. Students will utilize skills in teamwork, leadership, and communication gained in their program of study, and act in a professional and ethical manner in the area in which they apply their degree.
3. Graduates will show a commitment to on-going professional development, whether through graduate study, research programs, training courses, or leadership opportunities thereby adapting to an evolving, competitive global work environment.

Program Learning Outcomes

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Requirements

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH140</td>
<td>4</td>
<td>MATH141</td>
<td>4</td>
</tr>
<tr>
<td>CHEM135</td>
<td>3</td>
<td>PHYS161</td>
<td>3</td>
</tr>
<tr>
<td>ENGL101</td>
<td>3</td>
<td>ENES102(^1)</td>
<td>3</td>
</tr>
<tr>
<td>ENES100(^1)</td>
<td>3</td>
<td>ENME272</td>
<td>2</td>
</tr>
</tbody>
</table>

General Education Requirements

3 General Education Requirements

16

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME202</td>
<td>3</td>
<td>MATH246</td>
<td>3</td>
</tr>
<tr>
<td>MATH241</td>
<td>4</td>
<td>PHYS270 & PHYS271</td>
<td>4</td>
</tr>
<tr>
<td>PHYS260</td>
<td>4</td>
<td>ENES220</td>
<td>3</td>
</tr>
<tr>
<td>ENES221</td>
<td>3</td>
<td>ENES232</td>
<td>3</td>
</tr>
</tbody>
</table>

General Education Requirements

3 General Education Requirements

17

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME331</td>
<td>3</td>
<td>ENME332</td>
<td>3</td>
</tr>
<tr>
<td>ENME350</td>
<td>3</td>
<td>ENME351</td>
<td>3</td>
</tr>
<tr>
<td>ENME382</td>
<td>3</td>
<td>ENME361</td>
<td>3</td>
</tr>
<tr>
<td>ENME392</td>
<td>3</td>
<td>ENME371</td>
<td>3</td>
</tr>
</tbody>
</table>

General Education Requirements

3 ENGL393

15

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credits</th>
<th>Second Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENME472</td>
<td>3</td>
<td>ENME462</td>
<td>3</td>
</tr>
<tr>
<td>ENME400</td>
<td>3</td>
<td>Electives:</td>
<td>9</td>
</tr>
</tbody>
</table>

Technical Electives
A minimum of 120 credits are required for a degree.

Sample Elective Topics

- Waste Technology
- Bio-inspired Robotics
- Computer-Aided Design & Manufacturing
- Packaging of Electronic Systems
- Energy Conversion
- Engineering Management
- Environmental Engineering
- Flexible Macro-electronics
- Automotive Design
- Micro-nano Robotics
- Manufacturing
- Medical Robotics
- Fiber Optics
- Micro-Electro-Mechanical Systems
- Nuclear Reactor Engineering

Four Year Plan

Click here (https://eng.umd.edu/four-year-plans) for roadmaps for four-year plans in the A. James Clark School of Engineering.

Additional information on developing a four-year academic plan can be found on the following pages:

- 4yearplans.umd.edu
- the Student Academic Success-Degree Completion Policy (https://academiccatalog.umd.edu/undergraduate/registration-academic-requirements-regulations/academic-advising) section of this catalog